Starter Fertilizer: Choosing the Right Rate

Starter fertilizer placed with or near the seed is essential for vigorous early season growth in grass crops such as corn and wheat. We plant these crops early because we know vigorous early season growth is important to achieving high crop yields. Early planting also means cold soils, and starter fertilizer is necessary to get the crop going with a good start. Each spring, we receive many questions about starter fertilizer placement and seed-safe fertilizer rates. These questions come from farmers who want to plant as many acres per day as possible, take advantage of more efficient banded phosphorus placement, and of course reduce fertilizer costs.

The two most common questions we get are “What is highest rate of starter fertilizer I can apply with the seed?” and “What is the lowest rate of starter fertilizer I can apply with the seed and still get a starter effect?” South Dakota State University (SDSU) made a downloadable spreadsheet that calculates the maximum seed-safe fertilizer rate (Figure 1). The spreadsheet will ask for the crop choice, fertilizer product, seed opener width, row spacing, tolerable stand loss, soil texture, and soil water content. The spreadsheet calculations are based on SDSU greenhouse and field studies.

Seed Safety Calculator from SDSU for Starter Fertilizer Article

Figure 1. Fertilizer Seed Decision Aid from South Dakota State University. Download the spreadsheet here

Research has shown, that to achieve the full starter effect, a fertilizer granule or droplet must be within 1.5 to 2.0 inches of each seed. If the fertilizer granule or droplet is more than 1.5 to 2.0 inches away from the seed, the starter effect is lost. To illustrate the role of starter fertilizer rates and seed placement, AGVISE put together displays showing the distance between fertilizer granules or droplets at various rates and row spacings. For example, take a look at wheat planted in 7-inch rows with 30 lb/acre P2O5 (57 lb/acre 11-52-0) and corn planted in 30-inch rows with 30 lb/acre P2O5 (7.5 gal/acre 10-34-0). You need to maintain a sufficient starter fertilizer rate to keep fertilizer granules or droplets with 1.5 to 2.0 inches of each seed.

Starter fertilizer demonstration example for starter fertilizer article

Figure 2. Two examples from the AGVISE Starter Fertilizer Display series. Find more crops and fertilizer rates here.

In the northern Great Plains and Canadian Prairies, most fertilizer is applied at planting and often as seed-placed fertilizer. This creates a challenge to prevent soil nutrient mining when balancing seed safety and crop nutrient removal with higher crop yield potential. Soil nutrient mining occurs when you apply less fertilizer than crop nutrient removal, resulting in soil test P and K decline over time. Some broadleaf crops, like canola and soybean, are very sensitive to seed-placed fertilizer, allowing only low seed-placed fertilizer rates. In contrast, most cereal crops can tolerate higher seed-placed fertilizer rates. To maintain soil nutrient levels across the crop rotation, you need to apply more phosphorus fertilizer in crops that allow greater seed safety. You can apply more phosphorus fertilizer with crops like corn or wheat, which allows you build soil test P in those years, while you mine soil test P in canola or soybean years. If you cannot the maintain crop nutrient removal balance with seed-placed fertilizer, then you need to consider applying additional phosphorus in mid-row bands or broadcast phosphorus at some point in the crop rotation.

Table 1. Seed-safe fertilizer rates may not meet crop removal. In the example, the seed-safe limit is based on 1-inch disk or knife opener and 7.5-inch row spacing for air-seeded crops and 30-inch row spacing for corn. Phosphorus (P) balance: Seed-safe limit (lb/acre P2O5) minus crop P removal (lb/acre P2O5). A negative P balance indicates the seed-safe limit does not meet crop removal, which may decrease soil test P.

Starter fertilizer is an important part of any crop nutrition plan. Here are more resources to help you make the best decisions on starter fertilizer materials, placement, and rates.

Fertilizer Application with Small Grain Seed at Planting, NDSU

Safe Rates of Fertilizer Applied with the Seed, Saskatchewan Agriculture

Using banded fertilizer for corn production, University of Minnesota

Corn response to phosphorus starter fertilizer in North Dakota, NDSU

Wheat, barley and canola response to phosphate fertilizer, Alberta Agriculture

Starter Fertilizer Display: How low can YOU go?

When profits are squeezed, more farmers are asking about optimal starter fertilizer rates and how low starter fertilizer rates can be. These questions are the result of wanting to keep fertilizer costs down, to plant as many acres per day as possible, and to take advantage of more efficient, lower rates of banded phosphorus fertilizer compared to higher rates of broadcast phosphorus fertilizer.

To illustrate the role of starter fertilizer rates and seed placement, we put together displays showing the distance between fertilizer granules or droplets at various rates and row spacings. You can see several pictures with canola, corn, soybean, sugar beet, and wheat. We greatly thank John Heard with Manitoba Agriculture for helping with the displays.

The displays show the normal seed spacing for several crops with different dry or liquid fertilizer rates alongside the seed. These displays help visualize the distance between the seed and fertilizer at several rates. University research shows that to achieve the full starter effect, a fertilizer granule or droplet must be within 1.5-2.0 inches of each seed. If the fertilizer granule or droplet is more than 1.5-2.0 inches away from the seed, the starter effect is lost. Some people wonder about these displays, but you can prove it to yourself pretty easily. Just run the planter partially down on a hard surface at normal planting speed. You will see what you imagine as a constant stream of liquid fertilizer, ends up being individual droplets at normal speed, especially with narrow row spacings and lower fertilizer rates.

These displays help illustrate the minimum starter fertilizer rate to maintain fertilizer placement within 1.5-2.0 inches of each seed for the full starter effect. In addition to an adequate starter fertilizer rate, additional phosphorus and potassium should be applied to prevent nutrient mining, causing soil test levels to decline in years when minimum fertilizer rates are applied.

Caution: Ammonium Sulfate with Seed

Seed-placed fertilizer is a common practice to increase seedling vigor and optimize fertilizer placement and crop response. This is a popular strategy to apply phosphorus for canola, corn, and wheat. However, the seed-placed fertilizer rate cannot exceed seed safety limits, otherwise seedling germination and plant population may be reduced. Sulfur is very important in canola growth and development, so farmers often try placing ammonium sulfate (AMS) with canola seed as well! This can create big problems.

A team of agronomists and soil scientists at the University of Manitoba conducted greenhouse and field studies, examining the effect of seed-placed ammonium sulfate on canola plant population and seed yield. The plant population loss was much greater on soils with pH > 7.5 (Figure 1). The high pH soils contained calcium carbonate (CaCO3), which reacts with ammonium sulfate to create calcium sulfate (gypsum) and ammonium carbonate. The higher reaction pH of ammonium carbonate produces free ammonia (NH3). Free ammonia (NH3) in soil is toxic to living organisms and kills germinating seeds. Acute ammonia toxicity is a major concern with fertilizer materials that liberate free ammonia (NH3) in soil, such as anhydrous ammonia (82-0-0) or urea (46-0-0), ultimately reducing plant population if you are not careful with fertilizer rate and placement.

For Caution: Ammonium Sulfate with Seed post

Figure 1. Ammonium sulfate (AMS, 21-0-0-24S) included with seed-placed monoammonium phosphate (MAP, 10-52-0) reduced canola plant population. Soil carbonate content is 21% CCE and 0.5% CCE in knoll soil and hollow soil, respectively. Brandon, Manitoba.

Across the landscape, soil pH and carbonate content will vary. The well-drained lower landscape positions (swales, hollows) often have acidic to neutral pH and little carbonate. The upper landscape positions (knobs, knolls), suffering decades of soil erosion, often have high pH and ample carbonate (Figure 1). The risk of plant population loss is greater on eroded knobs where adding ammonium sulfate can create ammonia toxicity concern.

Considerable yield loss will occur if canola plant population is less than 70 plants per square meter. Even with low fertilizer rates, the interaction of seed-placed ammonium sulfate and phosphorus can greatly reduce canola plant population. In Manitoba, 25% plant population loss was observed with only 8 lb/acre S and 18 lb/acre P2O5 (Figure 2).For Caution: Ammonium Sulfate with Seed article

Figure 2. Ammonium sulfate (AMS, 21-0-0-24S) included with seed-placed monoammonium phosphate (MAP, 10-52-0) reduced canola plant population. Carman, Manitoba, 2011.

Sulfur is vital for successful canola production, but it must be applied safely. There are new air drill configurations with innovative seed and fertilizer placement options. Seed safety is paramount with seed-placed fertilizer. Ammonium sulfate should be broadcasted or banded away from seed (mid-row). Keeping ammonium sulfate away from seed will also allow you to maximize seed-placed phosphorus rates and efficiency without jeopardizing seed safety.

Placing ammonium sulfate with seed should be an emergency option only. Canola plant population loss should be expected, even at low ammonium sulfate rates, on soils with pH greater than 7.5 and calcium carbonate.

Fallow Syndrome: Preventing Phosphorus Problems

Some crops that do not support mycorrhizal fungi (left to right: sugar beet, canola, radish).

Producers in the northern Great Plains and upper Midwest need to consider the risk of fallow syndrome in their crop nutrition plans. You are probably asking, what is “fallow syndrome” and why should I care? After all, summer fallow is not that common anymore! But the greater number of Prevented Planting acres in 2019 and 2020 meant that we have had many unintended fallow fields, making fallow syndrome a serious and widespread concern for the next year.

Fallow syndrome is an induced phosphorus deficiency caused by a lack of mycorrhizal fungi in soil. Some plant species, like corn and wheat, rely heavily on mycorrhizae to colonize the plant root system and help acquire important nutrients like phosphorus and zinc. If soil is lacking sufficient mycorrhizae to colonize plant roots, a case of fallow syndrome will increase phosphorus fertilizer needs and even cost crop yield potential.

Understanding mycorrhizae

Mycorrhizae fungi occur naturally in soils and readily colonize plant roots. Upon root colonization, mycorrhizae fungal filaments act as extensions of the root system and increase the soil volume available for plant water and nutrient uptake. The combined root-mycorrhizae surface area can be up to 10-fold greater than roots without mycorrhizae. Mycorrhizae depend on living plant roots to support stable mycorrhizae populations. However, not all plant species host and support mycorrhizae growth. Some common field crops are non-host species and their planting results in rapid drops in mycorrhizae populations.

Summer fallow or unplanted cropland, such as Prevented Planting in 2020, is a classic example of providing no or few living plant roots in soil to maintain mycorrhizae populations. In addition, some crop species do not support mycorrhizae, such as those in the goosefoot family (sugar beet) and mustard family (canola, radish, turnip). Following a classic case of summer fallow or a non-mycorrhizae supporting crop, the mycorrhizae population in soil will quickly drop. A cover crop mix that included a grass species (e.g. barley, rye) should still support mycorrhizae and prevent fallow syndrome concerns.

Preventing fallow syndrome

The easiest prevention strategy after fallow is planting a crop species without fallow syndrome risk like soybean, canola, or sugar beet. Avoid planting susceptible crops like corn and wheat. These crops are highly dependent on mycorrhizae to acquire phosphorus, and extra starter phosphorus will be required if fallow syndrome risk is present.

To reduce fallow syndrome risk in corn or wheat, extra phosphorus fertilizer must be placed with or near the seed. Applying more broadcast phosphorus or relying on high soil test P will not prevent fallow syndrome. The starter phosphorus rate should be 20 to 40 lb/acre P2O5. In some university research trials, up to 60 lb/acre P2O5 with 2×2-band placement near the seed was needed to prevent corn yield loss to fallow syndrome.

For wheat, these phosphorus rates are typically seed safe with monoammonium phosphate (MAP, 11-52-0). Most corn planters can safely apply 20 lb/acre P2O5 (5 gal/acre ammonium polyphosphate, APP, 10-34-0) in the furrow. For medium/fine-textured soils with good soil moisture at planting, you can generally apply up to 10 gal/acre 10-34-0 (40 lb/acre P2O5) safely in the furrow at 30-inch row spacing. Higher 10-34-0 rates may exceed seed safety limits on dry soils or coarse-textured soils and require 2×2-band placement to maintain seed safety.

Complete liquid fertilizers, such as 6-24-6 or 9-18-9, are not suggested for preventing fallow syndrome. Compared to 10-34-0, the products have lower P concentration that result in less applied phosphorus, even if used at maximum seed safe rates. The extra N + K2O in “complete” liquid fertilizers increases the salt index and lowers the seed safe rate.