Update: Feed Nitrate Testing in a Drought Year

Drought continues to stress crops across the upper Midwest and the Canadian Prairies. As crop conditions continue to deteriorate in some places, we have received more phone calls about salvaging the drought-stressed crop as livestock feed and the need for feed nitrate testing. As you consider what to do with your standing crop, whether to harvest for grain or cut for hay, an important part of that consideration will be the nitrate concentration of the crop.

When drought-stressed annual crops (e.g., wheat, barley, oat, corn) are cut or grazed, producers must exercise caution about livestock nitrate poisoning when feeding these forages. Drought-stressed crops often accumulate nitrate because plant uptake of nitrate exceeds plant growth and nitrogen utilization. Nitrate is usually concentrated in lower plant parts (lower stem or stalk). When livestock, particularly sheep and cattle, ingest forages with a high nitrate concentration, nitrate poisoning can occur.

Instructions for collecting and submitting a feed nitrate test

1. Collect the plant part that livestock will consume, which may be the whole aboveground plant. If grazing, be mindful of the grazing height because the plant nitrate concentration will be lower near the base of the plant. If baling for hay or chopping for silage, cut at the intended cutter bar height.

Picture used for feed nitrate email - corn collage

2. Cut plant material with sturdy garden shears into 1- to 2-inch pieces. Mix the chopped plant parts together and take one quart-sized subsample for analysis (about four good handfuls).

3. Place subsample in AGVISE Plant Sample Bag. Write “Feed Nitrate” as the crop choice and select “Nitrate-nitrogen” as the analysis option.

    • If you are considering chopping corn for silage, also write “%Moisture” as an additional analysis because you will need to know if the moisture content is still adequate for silage fermentation. You may be surprised how much water will still be in drought-stressed corn stalks.

4. Ship plant sample to AGVISE Laboratories. If you cannot ship the sample right away, store it in a refrigerator until you can ship it.

IMPORTANT: Resample the hay or silage before feeding to any livestock. You need to know what is actually being fed to livestock, and you may need to blend it with other feed sources to dilute the nitrate concentration. For dry hay in bales, the nitrate concentration will not change in storage; use a hay probe to obtain the best possible feed sample. For silage, the nitrate concentration may decrease 20 to 50% during fermentation, so a fresh sample is necessary before feeding.

IMPORTANT: Many crop protection products have grazing restrictions on their labels that dictate if or when a crop treated with a product can be fed to livestock. Before using or selling a crop for livestock feed, check all labels of crop protection products that have been used on the crop this season. This includes seed treatments, herbicide applications, fungicide applications, and insecticide applications.

AGVISE Laboratories offers next-day turnaround for feed nitrate analysis. Rapid turnaround on nitrate analysis is important for producers debating to cut and bale or graze small grains or corn as livestock feed.  We also provide livestock water analysis, which includes total dissolved solids, nitrate, and sulfate, to assess livestock drinking water quality. Please call AGVISE staff in Northwood, ND (701-587- 6010) or Benson, MN (320-843-4109) with questions about nitrate, feed and hay quality, or water analysis. We can send you sampling supplies if needed.

AGVISE Laboratories Online Supplies Store

Helpful resources on using drought-stressed crops for livestock feed:

Nitrate Poisoning of Livestock (NDSU)

Using Drought-Stressed Corn as Forage (SDSU)

Drought-Related Issues in Forage, Silage and Baleage (Univ. of Missouri)

Save Time and Avoid Mistakes by Using AGVISOR to Submit Soil Samples Online

AGVISE Laboratories is always trying to make soil sampling easier. Since 2011, AGVISE customers have enjoyed submitting soil samples online through our AGVISOR platform. AGVISOR is the online platform that allows you to submit soil samples (conventional, grid/zone, and soybean cyst nematode samples); save grower and field information (so you don’t have to fill it in by hand on paper forms); and set default crop fertilizer guidelines. With online submission, you simply submit the sample information online and print barcode reference number stickers to place on each soil sample bag (like below). There is no more handwriting on soil sample bags or forms anymore!

Picture of samples with online sticker labels for AGVISOR article

With the online AGVISOR platform, organizing your sampling operation is easy. You can save time by submitting soil samples ahead of time and printing reference number stickers before the fall soil sampling rush begins. If you are working with a third-party sampler, you can submit samples online and then email a PDF of the barcode reference stickers to the sampler, allowing them to print the stickers at their location.

In addition to submitting samples online, the AGVISOR platform allows you to view, print, and save soil test reports. This means you can save soil test reports and send them as PDFs to growers. AGVISOR also allows you to change crop choice, yield goal, and fertilizer guideline type (broadcast vs. band). The flexibility of the platform makes it easy to keep up with changes that inevitably happen in farming.

If you have any questions on how to access AGVISOR or need help navigating the online submission and results platform, please give one of our Laboratories (Northwood 701-587-6010; Benson 320-843-4109) a call and our technical staff will be happy to help you.

Potassium and Drought: A Two-fold Water Uptake Problem

Potassium is back on the radar for many farmers and agronomists across the upper Midwest and northern Great Plains. In the past two weeks, corn growth and development have reached the stage where potassium deficiencies are becoming quite apparent, and widespread dry soil conditions during the 2021 drought have worsened the problem. In some instances, corn is displaying potassium deficiency symptoms on soils with medium to high soil test K (120 to 180 ppm) in spite of potassium fertilizer application.

Potassium is required in large quantities for plant growth and development. The plant tissue K range in normal corn plants is 3-5% K, which is similar to nitrogen. A 200-bushel/acre corn crop will typically uptake 200 lb N, 108 lb P2O5, and 280 lb K2O per acre through the growing season (IPNI, 2014). In other words, an actively growing corn crop takes a lot of potassium! Luckily, you do not have to apply all that potassium as fertilizer, and much will come from the plant-available K pool in the soil.

Potassium deficiency in corn. Symptoms are leaf chlorosis (yellowing) and necrosis (death) beginning at the leaf tip and outer leaf margin and progressing toward the midrib, often with wavy leaf edges. Potassium is mobile in the plant, so symptoms appear on the lower leaves first as the plant remobilizes potassium from lower leaves to support new plant growth. 

Drought reduces potassium availability

The plant-available K pool becomes less available when soil water is limited. This has become the top story as the 2021 drought has continued. Plant roots acquire potassium mostly through a process called diffusion. Diffusion is the slow movement of ions through water around soil particles to the plant root for uptake. As soil becomes drier, the thickness of the water film around soil particles becomes thinner and thinner, thus the diffusion path for potassium ions becomes longer and longer. The soil pore space becomes mostly air with little water remaining. This ultimately slows the rate at which potassium from soil or fertilizer can reach the plant root, and potassium deficiency may occur.

The consequence of the drought-induced potassium deficiency is two-fold because potassium also plays an essential role in plant water regulation. Potassium-stressed plants experience reduced photosynthesis and transpiration rates, resulting in poor water use efficiency of the already limited soil water that is available. In a nutshell, low soil water content reduces potassium availability from soil and fertilizer, and then the soil water that is there is poorly utilized because of the lack of potassium. In addition to limited soil water, other factors compound to reduce potassium uptake: soil test K, soil texture, clay mineralogy, soil compaction, and even fluffy soil syndrome.

Believe it or not, fluffy soil syndrome has been a component of more than one phone call concerning potassium deficiency. Do you see greener plants near the planter wheel tracks or sprayer tracks? Fluffy soil syndrome occurs when soil has not completely settled since spring tillage, which results in poor soil particle-to-particle contact and slow soil-water-root diffusion routes for potassium ions. The wheel tracks adequately firmed the soil to provide good soil particle-to-particle contact, maintaining better potassium diffusion.

Potassium deficiency in corn: A case study

In June 2021, AGVISE started to receive plant and soil samples to diagnose suspected potassium deficiencies in various crops. This corn example from west central Minnesota included plant and soil samples collected in the good and poor areas of the field. The leaf K concentration was 0.59% in the good and 0.52% in the poor area. For comparison, the corn leaf K sufficiency range at this growth sage should be 2-3% K. The corresponding soil samples had soil test K at 148 ppm in the good and 140 ppm in the poor area. The soil test K critical level for corn is 150-200 ppm, and the farmer had applied 50 lb/acre K2O broadcast + incorporation, which is very close to the university sufficiency guideline for corn. Although the farmer more or less did everything right for a normal rainfall year, drought conditions have reduced potassium availability to the point where potassium deficiency symptoms were apparent and visible.

One week after the plant and soil samples were collected, the field received an inch of rain, and the potassium deficiency symptoms disappeared! The entire corn field is green now. It is amazing what a little water will fix.

Potassium deficiency in corn confirmed with plant and soil analysis. Potassium-deficient corn plant (left) displays chlorosis and necrosis of the outer leaf margin and wavy leaf edge. Plant and soil samples were collected June 2021 in west central Minnesota.

Correcting the problem

So, what do you do next? Do you try to apply an in-season rescue potassium fertilizer application? You still need rain to water in any fertilizer applied to the soil surface. If you had applied an adequate amount of potassium fertilizer before planting, then the appropriate decision is to wait for rain to improve soil and fertilizer potassium availability. However, some people may not have applied enough potassium initially. In these cases, a rescue application of 60 lb/acre K2O broadcast (100 lb/acre potash, 0-0-60) followed by some rain should correct the symptoms. Do not skimp with anything less because you are already behind the eight-ball and you will need that much material to cover the soil surface adequately and affect enough individual corn plants. In NDSU research (2014-2016), an uncorrected potassium deficiency in corn could cost 20-30 bushel/acre compared to corn receiving adequate potassium fertilizer.

For liquid materials, potassium acetate and potassium thiosulfate could be dribbled between the rows, but the potassium rate will need to be similar to the dry potassium fertilizer rate and cost will likely be greater. Remember, potassium is something required in large quantities, not something corrected with a small application of 5-10 lb/acre K2O.

There is no way we could have planned for the very dry conditions that are exacerbating potassium deficiency symptoms across the region. For the future, the best preventative strategy is precision soil sampling (grid or zone) and fertilizing accordingly. It is important to identify and address those parts of fields where potassium may be limiting crop yield potential and spend fertilizer dollars where needed.